skip to main content


Search for: All records

Creators/Authors contains: "Furész, Gábor"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Holland, Andrew D. ; Beletic, James (Ed.)
    We present the InGaAs detector system of the Wide-Field Infrared Transient Explorer (WINTER), a new infrared instrument operating on a 1 meter robotic telescope at the Palomar Observatory. These commercially produced sensors are cooled to -50 °C by a thermo-electric cooler integrated into a room temperature package. These warm InGaAs sensors represent a dramatic reduction in cost and complexity over HgCdTe systems and achieve sky background-limited performance across our science bands for exposures greater than a few seconds. We present the design and implementation of the WINTER detector system and readout electronics. 
    more » « less
  2. Evans, Christopher J. ; Bryant, Julia J. ; Motohara, Kentaro (Ed.)
    The Wide-Field Infrared Transient Explorer (WINTER) is a new infrared time-domain survey instrument on a dedicated 1 meter robotic telescope at the Palomar Observatory. WINTER will perform the first seeing-limited time domain survey of the infrared (IR) sky, with a particular emphasis on identifying r-process material in binary neutron star (BNS) merger remnants detected by LIGO. We have developed and tested a custom opto-mechanical mounting scheme for a 6-channel tiled optical system with <90% fill factor. Here, we present the mechanical design and testing approach used in the development of WINTER. 
    more » « less
  3. Evans, Christopher J. ; Bryant, Julia J. ; Motohara, Kentaro (Ed.)
  4. Evans, Christopher J. ; Bryant, Julia J. ; Motohara, Kentaro (Ed.)
    The Wide-field Infrared Transient Explorer (WINTER) is a 1x1 degree infrared survey telescope under devel- opment at MIT and Caltech, and slated for commissioning at Palomar Observatory in 2021. WINTER is a seeing-limited infrared time-domain survey and has two main science goals: (1) the discovery of IR kilonovae and r-process materials from binary neutron star mergers and (2) the study of general IR transients, including supernovae, tidal disruption events, and transiting exoplanets around low mass stars. We plan to meet these science goals with technologies that are relatively new to astrophysical research: hybridized InGaAs sensors as an alternative to traditional, but expensive, HgCdTe arrays and an IR-optimized 1-meter COTS telescope. To mitigate risk, optimize development efforts, and ensure that WINTER meets its science objectives, we use model-based systems engineering (MBSE) techniques commonly featured in aerospace engineering projects. Even as ground-based instrumentation projects grow in complexity, they do not often have the budget for a full-time systems engineer. We present one example of systems engineering for the ground-based WINTER project, featuring software tools that allow students or staff to learn the fundamentals of MBSE and capture the results in a formalized software interface. We focus on the top-level science requirements with a detailed example of how the goal of detecting kilonovae flows down to WINTER's optical design. In particular, we discuss new methods for tolerance simulations, eliminating stray light, and maximizing image quality of a fly's-eye design that slices the telescope's focus onto 6 non-buttable, IR detectors. We also include a discussion of safety constraints for a robotic telescope. 
    more » « less
  5. Evans, Christopher J. ; Bryant, Julia J. ; Motohara, Kentaro (Ed.)
    The Wide-Field Infrared Transient Explorer (WINTER) is a new infrared time-domain survey instrument which will be deployed on a dedicated 1 meter robotic telescope at the Palomar Observatory. WINTER will perform a seeing-limited time domain survey of the infrared (IR) sky, with a particular emphasis on identifying r -process material in binary neutron star (BNS) merger remnants detected by LIGO. We describe the scientific goals and survey design of the WINTER instrument. With a dedicated trigger and the ability to map the full LIGO O4 positional error contour in the IR to a distance of 190 Mpc within four hours, WINTER will be a powerful kilonova discovery engine and tool for multi-messenger astrophysics investigations. In addition to follow-up observations of merging binaries, WINTER will facilitate a wide range of time-domain astronomical observations, all the while building up a deep coadded image of the static infrared sky suitable for survey science. WINTER's custom camera features six commercial large-format Indium Gallium Arsenide (InGaAs) sensors and a tiled optical system which covers a <1-square-degree field of view with 90% fill factor. The instrument observes in Y, J and a short-H (Hs) band tuned to the long-wave cutoff of the InGaAs sensors, covering a wavelength range from 0.9 - 1.7 microns. We present the design of the WINTER instrument and current progress towards final integration at the Palomar Observatory and commissioning planned for mid-2021. 
    more » « less
  6. Evans, Christopher J. ; Bryant, Julia J. ; Motohara, Kentaro (Ed.)
  7. null (Ed.)